Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees.

Identifieur interne : 000292 ( Main/Exploration ); précédent : 000291; suivant : 000293

Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees.

Auteurs : Yann Salmon [Finlande] ; Anna Lintunen [Finlande] ; Alexia Dayet [Finlande] ; Tommy Chan [Finlande] ; Roderick Dewar [Finlande, Australie] ; Timo Vesala [Finlande] ; Teemu Höltt [Finlande]

Source :

RBID : pubmed:31955422

Abstract

Photosynthetic rate is concurrently limited by stomatal limitations and nonstomatal limitations (NSLs). However, the controls on NSLs to photosynthesis and their coordination with stomatal control on different timescales remain poorly understood. According to a recent optimization hypothesis, NSLs depend on leaf osmotic or water status and are coordinated with stomatal control so as to maximize leaf photosynthesis. Drought and notching experiments were conducted on Pinus sylvestris, Picea abies, Betula Pendula and Populus tremula seedlings in glasshouse conditions to study the dependence of NSLs on leaf osmotic and water status, and their coordination with stomatal control, on timescales of minutes and weeks, to test the assumptions and predictions of the optimization hypothesis. Both NSLs and stomatal conductance followed power-law functions of leaf osmotic concentration and leaf water potential. Moreover, stomatal conductance was proportional to the square root of soil-to-leaf hydraulic conductance, as predicted by the optimization hypothesis. Though the detailed mechanisms underlying the dependence of NSLs on leaf osmotic or water status lie outside the scope of this study, our results support the hypothesis that NSLs and stomatal control are coordinated to maximize leaf photosynthesis and allow the effect of NSLs to be included in models of tree gas-exchange.

DOI: 10.1111/nph.16436
PubMed: 31955422


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees.</title>
<author>
<name sortKey="Salmon, Yann" sort="Salmon, Yann" uniqKey="Salmon Y" first="Yann" last="Salmon">Yann Salmon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lintunen, Anna" sort="Lintunen, Anna" uniqKey="Lintunen A" first="Anna" last="Lintunen">Anna Lintunen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dayet, Alexia" sort="Dayet, Alexia" uniqKey="Dayet A" first="Alexia" last="Dayet">Alexia Dayet</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chan, Tommy" sort="Chan, Tommy" uniqKey="Chan T" first="Tommy" last="Chan">Tommy Chan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dewar, Roderick" sort="Dewar, Roderick" uniqKey="Dewar R" first="Roderick" last="Dewar">Roderick Dewar</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601</wicri:regionArea>
<wicri:noRegion>2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vesala, Timo" sort="Vesala, Timo" uniqKey="Vesala T" first="Timo" last="Vesala">Timo Vesala</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Holtt, Teemu" sort="Holtt, Teemu" uniqKey="Holtt T" first="Teemu" last="Höltt">Teemu Höltt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31955422</idno>
<idno type="pmid">31955422</idno>
<idno type="doi">10.1111/nph.16436</idno>
<idno type="wicri:Area/Main/Corpus">000508</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000508</idno>
<idno type="wicri:Area/Main/Curation">000508</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000508</idno>
<idno type="wicri:Area/Main/Exploration">000508</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees.</title>
<author>
<name sortKey="Salmon, Yann" sort="Salmon, Yann" uniqKey="Salmon Y" first="Yann" last="Salmon">Yann Salmon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lintunen, Anna" sort="Lintunen, Anna" uniqKey="Lintunen A" first="Anna" last="Lintunen">Anna Lintunen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dayet, Alexia" sort="Dayet, Alexia" uniqKey="Dayet A" first="Alexia" last="Dayet">Alexia Dayet</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chan, Tommy" sort="Chan, Tommy" uniqKey="Chan T" first="Tommy" last="Chan">Tommy Chan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dewar, Roderick" sort="Dewar, Roderick" uniqKey="Dewar R" first="Roderick" last="Dewar">Roderick Dewar</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601</wicri:regionArea>
<wicri:noRegion>2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vesala, Timo" sort="Vesala, Timo" uniqKey="Vesala T" first="Timo" last="Vesala">Timo Vesala</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Holtt, Teemu" sort="Holtt, Teemu" uniqKey="Holtt T" first="Teemu" last="Höltt">Teemu Höltt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photosynthetic rate is concurrently limited by stomatal limitations and nonstomatal limitations (NSLs). However, the controls on NSLs to photosynthesis and their coordination with stomatal control on different timescales remain poorly understood. According to a recent optimization hypothesis, NSLs depend on leaf osmotic or water status and are coordinated with stomatal control so as to maximize leaf photosynthesis. Drought and notching experiments were conducted on Pinus sylvestris, Picea abies, Betula Pendula and Populus tremula seedlings in glasshouse conditions to study the dependence of NSLs on leaf osmotic and water status, and their coordination with stomatal control, on timescales of minutes and weeks, to test the assumptions and predictions of the optimization hypothesis. Both NSLs and stomatal conductance followed power-law functions of leaf osmotic concentration and leaf water potential. Moreover, stomatal conductance was proportional to the square root of soil-to-leaf hydraulic conductance, as predicted by the optimization hypothesis. Though the detailed mechanisms underlying the dependence of NSLs on leaf osmotic or water status lie outside the scope of this study, our results support the hypothesis that NSLs and stomatal control are coordinated to maximize leaf photosynthesis and allow the effect of NSLs to be included in models of tree gas-exchange.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31955422</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>226</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees.</ArticleTitle>
<Pagination>
<MedlinePgn>690-703</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16436</ELocationID>
<Abstract>
<AbstractText>Photosynthetic rate is concurrently limited by stomatal limitations and nonstomatal limitations (NSLs). However, the controls on NSLs to photosynthesis and their coordination with stomatal control on different timescales remain poorly understood. According to a recent optimization hypothesis, NSLs depend on leaf osmotic or water status and are coordinated with stomatal control so as to maximize leaf photosynthesis. Drought and notching experiments were conducted on Pinus sylvestris, Picea abies, Betula Pendula and Populus tremula seedlings in glasshouse conditions to study the dependence of NSLs on leaf osmotic and water status, and their coordination with stomatal control, on timescales of minutes and weeks, to test the assumptions and predictions of the optimization hypothesis. Both NSLs and stomatal conductance followed power-law functions of leaf osmotic concentration and leaf water potential. Moreover, stomatal conductance was proportional to the square root of soil-to-leaf hydraulic conductance, as predicted by the optimization hypothesis. Though the detailed mechanisms underlying the dependence of NSLs on leaf osmotic or water status lie outside the scope of this study, our results support the hypothesis that NSLs and stomatal control are coordinated to maximize leaf photosynthesis and allow the effect of NSLs to be included in models of tree gas-exchange.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Salmon</LastName>
<ForeName>Yann</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0003-4433-4021</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lintunen</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-1077-0784</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dayet</LastName>
<ForeName>Alexia</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Tommy</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dewar</LastName>
<ForeName>Roderick</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0001-9867-7893</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vesala</LastName>
<ForeName>Timo</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0002-4852-7464</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hölttä</LastName>
<ForeName>Teemu</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0001-7677-7156</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">drought</Keyword>
<Keyword MajorTopicYN="Y">leaf osmotic concentration</Keyword>
<Keyword MajorTopicYN="Y">leaf water potential</Keyword>
<Keyword MajorTopicYN="Y">non-stomatal limitation</Keyword>
<Keyword MajorTopicYN="Y">notching</Keyword>
<Keyword MajorTopicYN="Y">stomatal conductance</Keyword>
<Keyword MajorTopicYN="Y">xylem transport</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31955422</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16436</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Azcón-Bieto J. 1983. Inhibition of photosynthesis by carbohydrates in wheat leaves. Plant Physiology 73: 681-686.</Citation>
</Reference>
<Reference>
<Citation>Ball JT, Woodrow IE, Berry JA. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J ed. Progress in photosynthesis research: volume 4 proceedings of the VIIth international congress on photosynthesis providence, Rhode Island, USA, August 10-15, 1986. Dordrecht, the Netherlands: Springer, 221-224.</Citation>
</Reference>
<Reference>
<Citation>Buckley TN, Diaz-Espejo A. 2015. Partitioning changes in photosynthetic rate into contributions from different variables. Plant, Cell & Environment 38: 1200-1211.</Citation>
</Reference>
<Reference>
<Citation>Callister AN, Arndt SK, Adams MA. 2006. Comparison of four methods for measuring osmotic potential of tree leaves. Physiologia Plantarum 127: 383-392.</Citation>
</Reference>
<Reference>
<Citation>Cano FJ, López R, Warren CR. 2014. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species. Plant, Cell & Environment 37: 2470-2490.</Citation>
</Reference>
<Reference>
<Citation>Charrier G, Lacointe A, Améglio T. 2018. Dynamic modeling of carbon metabolism during the dormant period accurately predicts the changes in frost hardiness in walnut trees Juglans regia L. Frontiers in Plant Science 9: e1746.</Citation>
</Reference>
<Reference>
<Citation>Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752-756.</Citation>
</Reference>
<Reference>
<Citation>Cochard H, Coll L, Le Roux X, Améglio T. 2002. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiology 128: 282-290.</Citation>
</Reference>
<Reference>
<Citation>Cowan I, Farquhar G. 1977. Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology 31: 471-505.</Citation>
</Reference>
<Reference>
<Citation>Detmann KC, Araújo WL, Martins SCV, Sanglard LMVP, Reis JV, Detmann E, Rodrigues FÁ, Nunes-Nesi A, Fernie AR, DaMatta FM. 2012. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytologist 196: 752-762.</Citation>
</Reference>
<Reference>
<Citation>Dewar R, Mauranen A, Mäkelä A, Hölttä T, Medlyn B, Vesala T. 2018. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytologist 217: 571-585.</Citation>
</Reference>
<Reference>
<Citation>Diaz-Espejo A, Nicolás E, Fernández JE. 2007. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant, Cell & Environment 30: 922-933.</Citation>
</Reference>
<Reference>
<Citation>Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, Creek D, Eamus D, Maier C, Pfautsch S et al. 2017. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. Agricultural and Forest Meteorology 247: 454-466.</Citation>
</Reference>
<Reference>
<Citation>Duursma RA. 2015. plantecophys - an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10: e0143346.</Citation>
</Reference>
<Reference>
<Citation>Feller U. 2016. Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. Journal of Plant Physiology 203: 84-94.</Citation>
</Reference>
<Reference>
<Citation>Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J et al. 2012. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science 193-194: 70-84.</Citation>
</Reference>
<Reference>
<Citation>Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H. 2008. Mesophyll conductance to CO2: current knowledge and future prospects. Plant, Cell & Environment 31: 602-621.</Citation>
</Reference>
<Reference>
<Citation>Franck N, Vaast P, Genard M, Dauzat J. 2006. Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology 26: 517-525.</Citation>
</Reference>
<Reference>
<Citation>Gago J, Daloso DdM, Figueroa CM, Flexas J, Fernie AR, Nikoloski Z. 2016. Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: a multispecies meta-analysis approach. Plant Physiology 171: 265-279.</Citation>
</Reference>
<Reference>
<Citation>Galmés J, Medrano H, Flexas J. 2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist 175: 81-93.</Citation>
</Reference>
<Reference>
<Citation>Gimeno TE, Saavedra N, Ogée J, Medlyn BE, Wingate L. 2019. A novel optimization approach incorporating non-stomatal limitations predicts stomatal behaviour in species from six plant functional types. Journal of Experimental Botany 70: 1639-1651.</Citation>
</Reference>
<Reference>
<Citation>Goldschmidt EE, Huber SC. 1992. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiology 99: 1443-1448.</Citation>
</Reference>
<Reference>
<Citation>Granot D, David-Schwartz R, Kelly G. 2013. Hexose kinases and their role in sugar-sensing and plant development. Frontiers in Plant Science 4: e44.</Citation>
</Reference>
<Reference>
<Citation>Grassi G, Magnani F. 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment 28: 834-849.</Citation>
</Reference>
<Reference>
<Citation>Hernandez-Santana V, Rodriguez-Dominguez CM, Fernández JE, Diaz-Espejo A. 2016. Role of leaf hydraulic conductance in the regulation of stomatal conductance in almond and olive in response to water stress. Tree Physiology 36: 725-735.</Citation>
</Reference>
<Reference>
<Citation>Hölttä T, Lintunen A, Chan T, Mäkelä A, Nikinmaa E. 2017. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux. Tree Physiology 37: 851-868.</Citation>
</Reference>
<Reference>
<Citation>Huang C-W, Domec J-C, Palmroth S, Pockman WT, Litvak ME, Katul GG. 2018. Transport in a coordinated soil-root-xylem-phloem leaf system. Advances in Water Resources 119: 1-16.</Citation>
</Reference>
<Reference>
<Citation>Huang T, Jander G. 2017. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana. Planta 246: 737-747.</Citation>
</Reference>
<Reference>
<Citation>Hüve K, Bichele I, Tobias M, Niinemets Ü. 2006. Heat sensitivity of photosynthetic electron transport varies during the day due to changes in sugars and osmotic potential. Plant, Cell & Environment 29: 212-228.</Citation>
</Reference>
<Reference>
<Citation>Jarvis PG, Monteith JL, Weatherley PE. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 273: 593-610.</Citation>
</Reference>
<Reference>
<Citation>Jeannette E, Reyss A, Grégory N, Gantet P, Prioul J-L. 2000. Carbohydrate metabolism in a heat-girdled maize source leaf. Plant, Cell & Environment 23: 61-69.</Citation>
</Reference>
<Reference>
<Citation>Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis LFM. 2015. Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany 66: 2415-2426.</Citation>
</Reference>
<Reference>
<Citation>Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D. 2013. Hexokinase mediates stomatal closure. The Plant Journal 75: 977-988.</Citation>
</Reference>
<Reference>
<Citation>Kelly G, Sade N, Attia Z, Secchi F, Zwieniecki M, Holbrook NM, Levi A, Alchanatis V, Moshelion M, Granot D. 2014. Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth. PLoS ONE 9: e87888.</Citation>
</Reference>
<Reference>
<Citation>Kelly G, Sade N, Doron-Faigenboim A, Lerner S, Shatil-Cohen A, Yeselson Y, Egbaria A, Kottapalli J, Schaffer AA, Moshelion M. 2017. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential. The Plant Journal 91: 325-339.</Citation>
</Reference>
<Reference>
<Citation>Kikuta SB, Richter H. 1992. Leaf discs or press saps? A comparison of techniques for the determination of osmotic potentials in freeze-thawed leaf material. Journal of Experimental Botany 43: 1039-1044.</Citation>
</Reference>
<Reference>
<Citation>Kitao M, Yazaki K, Kitaoka S, Fukatsu E, Tobita H, Komatsu M, Maruyama Y, Koike T. 2015. Mesophyll conductance in leaves of Japanese white birch (Betula platyphylla var. japonica) seedlings grown under elevated CO2 concentration and low N availability. Physiologia Plantarum 155: 435-445.</Citation>
</Reference>
<Reference>
<Citation>Klein T, Hartmann H. 2018. Climate change drives tree mortality. Science 362: 758-758.</Citation>
</Reference>
<Reference>
<Citation>Kubiske M, Abrams M, Mostoller S. 1996. Stomatal and nonstomatal limitations of photosynthesis in relation to the drought and shade tolerance of tree species in open and understory environments. Trees 11: 76-82.</Citation>
</Reference>
<Reference>
<Citation>Leuning R. 1995. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment 18: 339-355.</Citation>
</Reference>
<Reference>
<Citation>Levitt J, Scarth GW. 1936. Frost-hardening studies with living cells: I. Osmotic and bound water changes in relation to frost resistance and the seasonal cycle. Canadian Journal of Research 14c: 267-284.</Citation>
</Reference>
<Reference>
<Citation>Lintunen A, Paljakka T, Jyske T, Peltoniemi M, Sterck F, von Arx G, Cochard H, Copini P, Caldeira MC, Delzon S et al. 2016. Osmolality and non-structural carbohydrate composition in the secondary phloem of trees across a latitudinal gradient in Europe. Frontiers in Plant Science 7: e726.</Citation>
</Reference>
<Reference>
<Citation>Long SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55: 591-628.</Citation>
</Reference>
<Reference>
<Citation>Maroco JP, Rodrigues ML, Lopes C, Chaves MM. 2002. Limitations to leaf photosynthesis in field-grown grapevine under drought-metabolic and modelling approaches. Functional Plant Biology 29: 451-459.</Citation>
</Reference>
<Reference>
<Citation>McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M. 2011. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in Ecology and Evolution 26: 523-532.</Citation>
</Reference>
<Reference>
<Citation>Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, De Angelis P, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology 17: 2134-2144.</Citation>
</Reference>
<Reference>
<Citation>Mitchell PJ, McAdam SAM, Pinkard EA, Brodribb TJ. 2017. Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata. Tree Physiology 37: 236-245.</Citation>
</Reference>
<Reference>
<Citation>Morgan JM. 1984. Osmoregulation and water stress in higher plants. Annual Review of Plant Physiology 35: 299-319.</Citation>
</Reference>
<Reference>
<Citation>Nakano H, Muramatsu S, Makino A, Mae T. 2000. Relationship between the suppression of photosynthesis and starch accumulation in the pod-removed bean. Functional Plant Biology 27: 167-173.</Citation>
</Reference>
<Reference>
<Citation>Nardini A, Salleo S. 2000. Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees 15: 14-24.</Citation>
</Reference>
<Reference>
<Citation>Ni B-R, Pallardy SG. 1992. Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms. Plant Physiology 99: 1502-1508.</Citation>
</Reference>
<Reference>
<Citation>Nikinmaa E, Hölttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T. 2013. Assimilate transport in phloem sets conditions for leaf gas exchange. Plant, Cell & Environment 36: 655-669.</Citation>
</Reference>
<Reference>
<Citation>Noormets A, Sôber A, Pell EJ, Dickson RE, Podila GK, Sôber J, Isebrands JG, Karnosky DF. 2001. Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. Plant, Cell & Environment 24: 327-336.</Citation>
</Reference>
<Reference>
<Citation>Paljakka T, Jyske T, Lintunen A, Aaltonen H, Nikinmaa E, Hölttä T. 2017. Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst). Plant, Cell & Environment 40: 2160-2173.</Citation>
</Reference>
<Reference>
<Citation>Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team.2018. nlme: linear and nonlinear mixed effects models. R package version 3.1-137. [WWW document] URL https://CRAN.R-project.org/package=nlme</Citation>
</Reference>
<Reference>
<Citation>Quentin AG, Close DC, Hennen LMHP, Pinkard EA. 2013. Down-regulation of photosynthesis following girdling, but contrasting effects on fruit set and retention, in two sweet cherry cultivars. Plant Physiology and Biochemistry 73: 359-367.</Citation>
</Reference>
<Reference>
<Citation>R Core Team. 2018. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing [WWW document] URL https://www.R-project.org/</Citation>
</Reference>
<Reference>
<Citation>Rada F, Goldstein G, Orozco A, Montilla M, Zabala O, Azocar A. 1989. Osmotic and turgor relations of three mangrove ecosystem species. Functional Plant Biology 16: 477-486.</Citation>
</Reference>
<Reference>
<Citation>Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato AS, Lidon FC. 2014. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Plant Biology 16: 133-146.</Citation>
</Reference>
<Reference>
<Citation>Sagardoy R, Vázquez S, Florez-Sarasa ID, Albacete A, Ribas-Carbó M, Flexas J, Abadía J, Morales F. 2010. Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytologist 187: 145-158.</Citation>
</Reference>
<Reference>
<Citation>Salmon Y, Torres-Ruiz JM, Poyatos R, Martinez-Vilalta J, Meir P, Cochard H, Mencuccini M. 2015. Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine. Plant, Cell & Environment 38: 2575-2588.</Citation>
</Reference>
<Reference>
<Citation>Salvucci ME, Crafts-Brandner SJ. 2004. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiologia Plantarum 120: 179-186.</Citation>
</Reference>
<Reference>
<Citation>Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675.</Citation>
</Reference>
<Reference>
<Citation>Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT. 2014. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment 37: 153-161.</Citation>
</Reference>
<Reference>
<Citation>Sperry JS, Alder NN, Eastlack SE. 1993. The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. Journal of Experimental Botany 44: 1075-1082.</Citation>
</Reference>
<Reference>
<Citation>Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, Love DM. 2017. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell & Environment 40: 816-830.</Citation>
</Reference>
<Reference>
<Citation>Stitt M, Krapp A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment 22: 583-621.</Citation>
</Reference>
<Reference>
<Citation>Talbott LD, Zeiger E. 1996. Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiology 111: 1051-1057.</Citation>
</Reference>
<Reference>
<Citation>Turgeon R. 2010. The role of phloem loading reconsidered. Plant Physiology 152: 1817-1823.</Citation>
</Reference>
<Reference>
<Citation>Turnbull MH, Murthy R, Griffin KL. 2002. The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant, Cell & Environment 25: 1729-1737.</Citation>
</Reference>
<Reference>
<Citation>Warren CR, Bleby T, Adams MA. 2007. Changes in gas exchange versus leaf solutes as a means to cope with summer drought in Eucalyptus marginata. Oecologia 154: 1.</Citation>
</Reference>
<Reference>
<Citation>Williams M, Rastetter EB, Fernandes DN, Goulden ML, Wofsy SC, Shaver GR, Melillo JM, Munger JW, Fan S-M, Nadelhoffer KJ. 1996. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant, Cell & Environment 19: 911-927.</Citation>
</Reference>
<Reference>
<Citation>Wong SC, Cowan IR, Farquhar GD. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282: 424-426.</Citation>
</Reference>
<Reference>
<Citation>Zuur A, Ieno E, Walker N, Saveliev A, Smith G. 2009. Mixed effects models and extensions in ecology with R. In: Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W, eds. New York, NY, USA: Spring Science & Business Media, 120-129.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Finlande</li>
</country>
<region>
<li>Uusimaa</li>
</region>
<settlement>
<li>Helsinki</li>
</settlement>
<orgName>
<li>Université d'Helsinki</li>
</orgName>
</list>
<tree>
<country name="Finlande">
<region name="Uusimaa">
<name sortKey="Salmon, Yann" sort="Salmon, Yann" uniqKey="Salmon Y" first="Yann" last="Salmon">Yann Salmon</name>
</region>
<name sortKey="Chan, Tommy" sort="Chan, Tommy" uniqKey="Chan T" first="Tommy" last="Chan">Tommy Chan</name>
<name sortKey="Chan, Tommy" sort="Chan, Tommy" uniqKey="Chan T" first="Tommy" last="Chan">Tommy Chan</name>
<name sortKey="Dayet, Alexia" sort="Dayet, Alexia" uniqKey="Dayet A" first="Alexia" last="Dayet">Alexia Dayet</name>
<name sortKey="Dewar, Roderick" sort="Dewar, Roderick" uniqKey="Dewar R" first="Roderick" last="Dewar">Roderick Dewar</name>
<name sortKey="Holtt, Teemu" sort="Holtt, Teemu" uniqKey="Holtt T" first="Teemu" last="Höltt">Teemu Höltt</name>
<name sortKey="Lintunen, Anna" sort="Lintunen, Anna" uniqKey="Lintunen A" first="Anna" last="Lintunen">Anna Lintunen</name>
<name sortKey="Salmon, Yann" sort="Salmon, Yann" uniqKey="Salmon Y" first="Yann" last="Salmon">Yann Salmon</name>
<name sortKey="Vesala, Timo" sort="Vesala, Timo" uniqKey="Vesala T" first="Timo" last="Vesala">Timo Vesala</name>
<name sortKey="Vesala, Timo" sort="Vesala, Timo" uniqKey="Vesala T" first="Timo" last="Vesala">Timo Vesala</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Dewar, Roderick" sort="Dewar, Roderick" uniqKey="Dewar R" first="Roderick" last="Dewar">Roderick Dewar</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000292 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000292 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31955422
   |texte=   Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31955422" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020